GAU, Faculty of Engineering

Course Unit Title Power System Analysis & Protection			
Course Unit Code	EEN486		
Type of Course Unit	Technical Elective, EE engineering students		
Level of Course Unit	4th Year BSc		
National Credits	3		
Number of ECTS Credits Allocated	6 ECTS		
Theoretical (hour/week)	3		
Practice (hour/week)	-		
Laboratory (hour/week)	-		
Year of Study	4		
Semester when the course unit is delivered	7		
Course Coordinator	Prof. Dr. Adalet Abiyev		
Name of Lecturer (s)	Prof. Dr. Adalet Abiyev		
Name of Assistant (s)	-		
Mode of Delivery	Face to Face, E-learning activities		
Language of Instruction	English		
Prerequisities and co-requisities	-		
Recommended Optional Programme Components	Basic bacground Circuit Theory		

Objectives of the Course:

> Analyze unbalanced power systems using symmetrical components

- > Power flow determination using the Gauss-Seidel and the Newton-Raphson methods
- Perform fault analysis using symmetrical components and determine fault currents and voltages at various locations in the network
- Understand the philosophy and the principles of power system protection, and know how to set primary protection and back-up protection for inverse time overcurrent relays.

Lear	ning Outcomes				
When this course has been completed the student should be able to As:					
1	<i>derive</i> the basic concepts and methods used for power system analysis.				
2	<i>construct</i> mathematical models for computing the steady state performance, and basic unbalanced performance of power systems.				
3	3 To <i>derive, describe</i> and <i>compare</i> different models of the most common equipment used in power network models.				
4	Using different methods, to <i>compute</i> , <i>analyze</i> , and <i>reflect</i> on the performance of a power system under steady state and unbalanced operation				
5	Conduct experiments and interpret obtained data				
	Assesment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 La	b. Work			
Cour	se's Contribution to Program				
		CL			
1	1 Ability to understand and apply knowledge of mathematics, science, and engineering				
2	2 Ability to design and conduct experiments as well as to analyze and interpret data				
3	Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct				
4	4 Ability to apply systems thinking in problem solving and system design				
5	5 Knowledge of contemporary issues while continuing to engage in lifelong learning				
6	6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice				
7	Ability to express their ideas and findings, in written and oral form				
8	Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints				
9	Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner				
11	Strong foundation on the fundamentals of Electrical and Electronics Engineering such as Circuit Theory, Signals, Systems, Control and Communications, which are necessary for successful practice in the field				
12	2 Awareness on the contemporary requirements, methods and applications of the Electrical and Electronics Engineering				

CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5: Very High)

Week			Exam s
1		Introduction	
2	Chapter 3	Per-unit system.	
3	Chapter 4	Transmission line characteristics. Line inductance, line transposition.	
4	Chapter 5	Capacitance of the transmission lines. Earth effect.	
5	Chapter 6	Analysis of power systems networks and methods of solution	Quiz 1
6		Load flow and short circuit analysis.	
7	Chapter 10	Symmetrical three-phase faults.	
8			Midterm
9		Symmetrical components.	
10	Chapter 11	Power system stability analysis	
11	Chapter 12	Economic operation of power systems.	Quiz 2
12	Chapter 7[1]	Current and voltage transformers. Overcurrent protection.	
13		Differential protection and its application to generators.	
14		Transformer and bus bar protections.	
15			Final Exam

Recommended Sources

Textbook: Hadi Saadat, *Power System Analysis*, 3rd Ed., PSA Publishing, June 2010. (Other editions are also useful). **Supplementary Material (s):**

1. Electrical Energy Systems. Mohamed E. El-Hawary. 2000 by CRC Press LLC.

2. Power System Analysis and Design, 4rd ed., Glover, Sarma, and Overbye, Thompson, 2008.

Assessment

Attendance& E-learning	5%
Quiz-1	10%
Midterm Exam	30%
Quiz-2	10%
Final Exam	45%
Total	100%

ECTS Allocated Based on the Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class (including the Exam week)	15	3	45
Labs and Tutorials	-	-	-
Assignments	2	6	12
Project/Presentation/Report Writing	-	-	-
E-learning Activities	10	3	30
Quizzes	2	6	12
Midterm Examination	1	12	12
Final Examination	1	14	14
Self Study	14	3	42
Total Workload	167		
Total Workload/30 (h)	5.67		
ECTS Credit of the Course	6		