GAU, Faculty of Engineering

Course Unit Title	Power Supply & Energy Transmission	
Course Unit Code	EEN 484	
Type of Course Unit	Technical Elective	
Level of Course Unit	4th Year BSc	
National Credits	3	
Number of ECTS Credits Allocated	6 ECTS	
Theoretical (hour/week)	3	
Practice (hour/week)	-	
Laboratory (hour/week)	-	
Year of Study	4	
Semester when the course unit is delivered	7	
Name of Lecturer (s)	Prof. Dr. Adalet Abiyev	
Name of Assistant (s)	-	
Mode of Delivery	Face to Face, E-learning activities	
Language of Instruction	English	
Prerequisities and co-requisities	EEN303	
Recommended Optional Programme Components	Assignments, E-learning(solution of examples)	

Objectives of the Course:

> Tearch the techniques for calculating the active and reactive power

- > Tearch of balanced and unbalanced three-phase circuits including polyharmonic conditions
- > Teach the tree-phase powerful transformers analysis methods.

> Understand the energy mesurement and evaluation techniques in three-phase systems

Learning Outcomes

	5			
When this course has been completed the student should be able to Asse				
1	Teaching the generation of three-phase voltages.			
2	eaching the polyphase energy transmission and distribution systems.			
3	Compute power and energy in unbalanced			
4	Compute parameters of transformer from short-circuit and open-circuit	1		
5	Conduct experiments and interpret obtained data	3		
Ass	sesment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4. Presentation, 5	Lab. Work		
Cour	se's Contribution to Program			
		CL		
1	Ability to understand and apply knowledge of mathematics, science, and engineering	4		
2	Ability to design and conduct experiments as well as to analyze and interpret data			
3	Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct			
4	Ability to apply systems thinking in problem solving and system design			
5	Knowledge of contemporary issues while continuing to engage in lifelong learning			
6	Ability to use the techniques, skills and modern engineering tools necessary for engineering practice			
7	Ability to express their ideas and findings, in written and oral form			
8	Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints			
9	Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner			
11	Strong foundation on the fundamentals of Electrical and Electronics Engineering such as Circuit Theory, Signals, Systems, Control and Communications, which are necessary for successful practice in the field			
12	Awareness on the contemporary requirements, methods and applications of the Electrical and Electronics Engineering			
CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5:Very High)				
Cour	se Contents			
1	Introduction			
-				

2	Chapter 3	General structure and basic elements of an electric power system.	
3	Chapter 4	Balanced and unbalanced set of generated voltages.	
4	Chapter 5	Balanced Y-Y circuit analysis.	
5	Chapter 6	Balanced Y- Δ circuit analysis.	Quiz 1
6		Balanced Δ - Δ circuit analysis	
7	Chapter	Balanced Δ -Y circuit analysis	
	10		
8			Midterm
9		Electric power in a sinusoidal balanced system	
10	Chapter	Electric power in a nonsinusoidal balanced system.	
	11		
11	Chapter	Three-phase power and energy measurement algorithms in balanced and	Quiz 2
	12	unbalanced power systems	
12	Chapter 7	Power transformers and their equivalent circuits.	
13		Effect of secondary current in and the reactances of the power	
		transformers.	
14		Engineering aspects of transformer analysis.	
		Short-circuit and open-circuit tests of transformers	
15			Final Exam

Recommended Sources

Textbook: Allan R. Hamblay. Electrical Engineering. Principles and Applications. 2nd Edition,2002 by Prentice Hall Inc.

Supplementary Material (s):

1. James W. Nilsson, Susan A. Riedel. Electrical Circuits. 7th Edition. Prentice Hall. 2005.

2. Electric Machinery. Fitzgerald A.E. and others. Fifth Edition. McGraw-Hill Book Company, London, 1990.

Assessment

Attendance	5%
Quiz-1	10%
Midterm Exam	30%
Quiz-2	10%
Final Exam	45%
Total	100%

ECTS Allocated Based on the Student Workload

Activities	Number	Duration (hour)	Total Workload
Course duration in class	15	3	45
Labs and Tutorials	-	-	-
Assignments	2	6	12
Project/Presentation/Report Writing	-	-	-
E-learning Activities	10	3	30
Quizzes	2	6	12
Midterm Examination	1	12	12
Final Examination	1	14	14
Self Study	14	3	42
Total Workload			
ECTS Credit of the Course			