GAU, Faculty of Engineering

Course Unit Title	Circuit Theory		
Course Unit Code	EEN303		
Type of Course Unit	Compulsory, Electrical engineering students		
Level of Course Unit	3 rd Year BSc		
National Credits	4		
Number of ECTS Credits Allocated	7 ECTS		
Theoretical (hour/week)	3		
Practice (hour/week)	-		
Laboratory (hour/week)	2		
Year of Study	5		
Semester when the course unit is delivered	Fall		
Made of Delivery	Face to Face, Laboratory Experiments,		
Mode of Delivery	E-learning activities		
Language of Instruction	English		
Prerequisities and co-requisities	ENG201		
Recommended Optional Programme Components	Differential Equations		

Objectives of the Course: Students will be able to,

- > Distigguish the need of different methods in analysing circuits.
- Analyse Circuits in phasor domain.
- Analyse Power in circuits
- Analyse Circuits in Laplace domain.

Learning Outcomes		
	esment.	
1 Analyze circuits by phasors		
Calculate AC power, Active reactive power		
3 Analyse the First order circuits by Diff. Equations		
Analyse Circuits by Laplace Transforms		
5 Use a circuit simulator efficiently	2,5	
Assesment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Wo		
Course's Contribution to Program		
	CL	
1 Ability to understand and apply knowledge of mathematics, science, and engineering		
2 Ability to design and conduct experiments as well as to analyze and interpret data		
3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct		
4 Ability to apply systems thinking in problem solving and system design		
5 Knowledge of contemporary issues while continuing to engage in lifelong learning		
6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice		
Ability to express their ideas and findings, in written and oral form		
8 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints		
Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner		
 Strong foundation on the fundamentals of Electrical and Electronics Engineering such as Circuit Theory, Signals, Systems, Control and Communications, which are necessary for successful practice in the field 		
Awareness on the contemporary requirements, methods and applications of the Electrical and Electronics Engineering		
CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5:Very High)		

Course Contents				
Week			Exam s	
1		Introduction		
2		Review of methods and theorems of circuit theory	Assign. 1	
3	Chapter 9	Phasors		
4		Circuit Analysis with Phasors	Assign. 2	
5		и		
6	Chapter 10	Power in Circuits (time domain)	Assign. 3	
7		Power in Circuits (phasor domain)		
8		u		
9			Midterm	
10	Chapter 13	Intro. to Laplace Transforms		
11		<i>u</i>	Assign. 4	
12	Chapter 14	Laplace transforms in circuit analysis	Quiz	
13		u u		
14		ű		
15			Final	

Recommended Sources

Textbook: Electric Circuits, James W. Nilsson and Susan A. Riedel, Addison Wesley Publishing Company, (8th Edition 2008) (Other editions are also useful)

Supplementary Material (s): Fundamentals of Electric Circuits, C.K. Alexander & M. N. O. Sadiku, McGraw-Hill, 2001

Assessment

5%	
10%	
25%	Written
15%	Written
40%	Written
100%	
	10% 25% 15% 40%

ECTS Allocated Based on the Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class (including the Exam week)	15	3	45
Labs and Tutorials	13	2	26
Assignments	-	-	-
Project/Presentation/Report Writing	4	4	16
E-learning Activities	12	4	48
Quizzes	1	6	6
Midterm Examination	1	12	12
Final Examination	1	15	12
Self Study	14	3	42
Total Workload	207		
Total Workload/30 (h)	6.9		
ECTS Credit of the Course	7		