GAU, Faculty of Engineering

Course Unit Title	Java Programming
Course Unit Code	CEN477
Type of Course Unit	Technical Elective, Computer Engineering Students
Level of Course Unit	4 th Year BSc
National Credits	3
Number of ECTS Credits Allocated	6 ECTS
Theoretical (hour/week)	3
Practice (hour/week)	-
Laboratory (hour/week)	-
Year of Study	4
Semester when the course unit is delivered	7/8
Course Coordinator	Assist. Prof. Dr. Tamer Tulgar
Name of Lecturer (s)	Assist. Prof. Dr. Tamer Tulgar
Name of Assistant (s)	-
Mode of Delivery	Face to Face
Language of Instruction	English
Prerequisities and co-requisities	CEN305 - Object Oriented Programming
Recommended Optional Programme Components	Basic Bacground on Object Oriented Programming and
Recommended Optional Programme Components	Data Structures

Objectives of the Course:

- > To review the basic programming concepts in JAVA programming language.
- To give the students a solid foundation of Object Oriented Programming in JAVA language which include classes, constructors and overriding methods, overloading methods
- > To teach inheritance and polymorphism in JAVA
- > To teach abstract classes and interfaces in JAVA
- To provide the students the basics of JAVA language so that they can continue to develop their knowhow and programming abilities in JAVA

Lear	Learning Outcomes				
When this course has been completed the student should be able to As			sesment.		
1	Distinguish Object Oriented programming from declarative and procedural ones		1		
2	Understand the Java Virtual Machine architecture and behavior		1		
3	Design and implement object oriented software solutions using the JAVA language		1		
4	Use program flow control statements to develop Java software solutions		1		
5	Use inheritance, polymorphism, Interfaces and Abstract classes where needed in real-life software projects	asses where needed in real-life 1,2			
6	Learn how to use basic JAVA library and tools at a depth that is sufficient to solve real- world programming problems	nd tools at a depth that is sufficient to solve real-1,2			
	Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4. Presentation, 5 Lab	. Wo	ork		
Cour	se's Contribution to Program				
			CL		
1	1 Ability to understand and apply knowledge of mathematics, science, and engineering				
2	2 Ability to design and conduct experiments as well as to analyze and interpret data		1		
3	3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct				
4 Ability to apply systems thinking in problem solving and system design			5		
5 Knowledge of contemporary issues while continuing to engage in lifelong learning			2		
6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice			5		
7	Ability to express their ideas and findings, in written and oral form		1		
8	8 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints		4		
9	9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner				
10	To apply fundamental concepts of software design, database design, data processing and artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions.		5		
11	Ability to analyse and design hardware systems by applying the principles of embedded systems, microprocessors, computer networks, distributed systems and data communication.		1		
CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5: Very High)					

Course Contents					
Week			Exams		
1	Chapter 1	Introduction			
2	Chapter 2	Flow Control Statements			
3		Flow Control Statements			
4		Arrays, Strings, Class Lib. Usage			
5	Chapter 3	Classes and Objects			
6		Classes and Objects			
7			Midterm		
8	Chapter 4	Inheritance			
9		Inheritance			
10		Compile time polymorphism			
11		Run time Polymorphism			
12		Inheritance and Polymorphism case study	Quiz		
13	Chapter 5	Abstract Classes and methods			
14		Abstract Classes and methods			
15		Interfaces	Final		

Recommended Sources

Textbook:

H. Shildt, "Java: A Begginner's Guide", McGraw-Hill Osborne Media, 4th Edition, 2006.

Supplementary Material (s):

B. Eckel, "Thinking in JAVA", Prentice Hall, 4th Edition, 2006

Assessment

Attendance	10%	Less than 25% class attendance results in NG grade.
Laboratory	-	
Midterm Exam	30%	Written Exam
Quiz	20%	Written Exam
Final Exam	40%	Written Exam
Total	100%	

ECTS Allocated Based on the Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class (including the Exam week)	15	3	45
Labs and Tutorials	-	-	-
Assignments	-	-	-
Project/Presentation/Report Writing	4	5	20
E-learning Activities	-	-	-
Quizzes	1	15	15
Midterm Examination	1	15	15
Final Examination	1	15	15
Self Study	15	4	60
Total Workload	170		
Total Workload/30 (h)	5.6		
ECTS Credit of the Course	6		