GAU, Faculty of Engineering

Course Unit Title	Parallel Computing
Course Unit Code	CEN455
Type of Course Unit	Technical Elective, Computer Engineering Students
Level of Course Unit	4 th Year BSc
National Credits	3
Number of ECTS Credits Allocated	6 ECTS
Theoretical (hour/week)	3
Practice (hour/week)	-
Laboratory (hour/week)	-
Year of Study	4
Semester when the course unit is delivered	7/8
Course Coordinator	
Name of Lecturer (s)	
Name of Assistant (s)	-
Mode of Delivery	Face to Face
Language of Instruction	English
Prerequisities and co-requisities	-
Recommended Optional Programme Components	Basic bacground Computing and Boolean Algebra

Objectives of the Course:

This course will introduce students to a topic of fundamental importance to a wide variety of application areas such as:

- Motivations for parallel processing
 Parallel computer architectures
 Multicore programming with OpenMP
- Programming on massively parallel architectures (GPUs)
- Message passing programming with MPI
- > Fundamental algorithms: backtracking, branch-and-bound, divide and conquer, sorting, searching

Learning	Outcomes
Louining	Outcomes

When this course has been completed the student should be able to Assessment. 1 design and analyze algorithms that execute efficiently on parallel computers 1,2 2 implement distributed programs using the Message Passing Interface (MPI) 1,2 3 implement multicore programs using OpenMP 1,2 4 implement programs in CUDA on GPUs. 1,2 Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work Course's Contribution to Program Course's Contribution to Program 2 2 Ability to understand and apply knowledge of mathematics, science, and engineering 2 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 ethical conduct 1 4 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 4 5 Knowledge of contemporary issues while continuing to engage in lifelong learning 1 6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice 4 7 Ability
1 design and analyze algorithms that execute efficiently on parallel computers 1,2 2 implement distributed programs using the Message Passing Interface (MPI) 1,2 3 implement multicore programs using OpenMP 1,2 4 implement programs in CUDA on GPUs. 1,2 Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work Course's Contribution to Program 2 Ability to understand and apply knowledge of mathematics, science, and engineering 2 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 4 5 Knowledge of contemporary issues while continuing to engage in lifelong learning 1 6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice 4 7 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 5 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 <
2 implement distributed programs using the Message Passing Interface (MPI) 1,2 3 implement multicore programs using OpenMP 1,2 4 implement programs in CUDA on GPUs. 1,2 Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work Course's Contribution to Program 2 Ability to understand and apply knowledge of mathematics, science, and engineering 2 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 4 5 Knowledge of contemporary issues while continuing to engage in lifelong learning 1 6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice 4 7 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 5 9 Ability to approach engineering problems and effects of their possible solutions within a well realistic constraints 3 9 Ability to approach engineering problems and effects of their possible solutions within a well realistic constraints 3 <
3 implement multicore programs using OpenMP 1,2 4 implement programs in CUDA on GPUs. 1,2 Assesment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work Course's Contribution to Program Course's Contribution to Program CL 1 Ability to understand and apply knowledge of mathematics, science, and engineering 2 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 4 5 Knowledge of contemporary issues while continuing to engage in lifelong learning 1 6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice 4 7 Ability to express their ideas and findings, in written and oral form 1 8 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3
4 implement programs in CUDA on GPUs. 1,2 Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work Course's Contribution to Program 2 Ability to understand and apply knowledge of mathematics, science, and engineering 2 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 4 5 Knowledge of contemporary issues while continuing to engage in lifelong learning 1 6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice 4 7 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 5 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3
Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work Course's Contribution to Program 1 Ability to understand and apply knowledge of mathematics, science, and engineering 2 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 4 5 Knowledge of contemporary issues while continuing to engage in lifelong learning 1 6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice 4 7 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 5 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3
Course's Contribution to Program CL 1 Ability to understand and apply knowledge of mathematics, science, and engineering 2 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 4 5 Knowledge of contemporary issues while continuing to engage in lifelong learning 1 6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice 4 7 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 5 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3
CLCL1Ability to understand and apply knowledge of mathematics, science, and engineering22Ability to design and conduct experiments as well as to analyze and interpret data13Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct14Ability to apply systems thinking in problem solving and system design45Knowledge of contemporary issues while continuing to engage in lifelong learning16Ability to use the techniques, skills and modern engineering tools necessary for engineering practice47Ability to express their ideas and findings, in written and oral form18Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints59Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner3
1Ability to understand and apply knowledge of mathematics, science, and engineering22Ability to design and conduct experiments as well as to analyze and interpret data13Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct14Ability to apply systems thinking in problem solving and system design45Knowledge of contemporary issues while continuing to engage in lifelong learning16Ability to use the techniques, skills and modern engineering tools necessary for engineering practice47Ability to express their ideas and findings, in written and oral form18Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints59Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner3
2Ability to design and conduct experiments as well as to analyze and interpret data13Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct14Ability to apply systems thinking in problem solving and system design45Knowledge of contemporary issues while continuing to engage in lifelong learning16Ability to use the techniques, skills and modern engineering tools necessary for engineering practice47Ability to express their ideas and findings, in written and oral form18Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints59Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner3
3Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct14Ability to apply systems thinking in problem solving and system design45Knowledge of contemporary issues while continuing to engage in lifelong learning16Ability to use the techniques, skills and modern engineering tools necessary for engineering practice47Ability to express their ideas and findings, in written and oral form18Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints59Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner3
4Ability to apply systems thinking in problem solving and system design45Knowledge of contemporary issues while continuing to engage in lifelong learning16Ability to use the techniques, skills and modern engineering tools necessary for engineering practice47Ability to express their ideas and findings, in written and oral form18Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints59Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner37To apply fundamental concepts of software design, database design, data processing and3
5 Knowledge of contemporary issues while continuing to engage in lifelong learning 1 6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice 4 7 Ability to express their ideas and findings, in written and oral form 1 8 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 5 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 To apply fundamental concepts of software design, database design, data processing and 5
6Ability to use the techniques, skills and modern engineering tools necessary for engineering practice47Ability to express their ideas and findings, in written and oral form18Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints59Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner37To apply fundamental concepts of software design, database design, data processing and3
7 Ability to express their ideas and findings, in written and oral form 1 8 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 5 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 To apply fundamental concepts of software design, database design, data processing and 3
8 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 5 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 To apply fundamental concepts of software design, database design, data processing and 3
9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 To apply fundamental concepts of software design, database design, data processing and 3
To apply fundamental concepts of software design, database design, data processing and
10 artificial intelligence in the modeling, designing, implementing, testing and deploying software 2 solutions.
11Ability to analyse and design hardware systems by applying the principles of embedded systems, microprocessors, computer networks, distributed systems and data communication.5
CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5: Very High)

Course	Contents		
Week			Exams
1	Chapter 1	Parallel Algorithm Design	
2	Chapter 2	Shared-Memory Programming with OpenMP	
3		Shared-Memory Programming with OpenMP	
4		The Task Parallel Library (TPL) and Microsoft's Parallel Computing Platform (PCP)	
5	Chapter 3	Message-Passing Programming	
6		Message-Passing Programming	
7			Midterm
8	Chapter 4	The Sieve of Eratosthenes	
9		Floyd's Algorithm	
10	Chapter 5	Performance Analysis	
11		Matrix-Vector Multiplication	
12		Matrix-Vector Multiplication	Quiz
13		Combinatorial Search	
14		Sorting	
15			Final

Recommended Sources

Textbook:

Grama, A., A. Gupta, G. Karypis, and V. Kumar, "Introduction to Parallel Computing", Addison-Wesley, 2nd Edition, 2003.

Supplementary Material (s):

1. Chapman, B., G. Jost, and R. V. D. Pas, "Using OpenMP Portable Shared Memory Parallel Programming", MIT Press, 2008.

2. Gropp, W., E. Lusk, and A. Skjellum, "Using MPI: Portable Parallel Programming with the Message-Passing Interface", MIT Press, 1999.

Attendance	10%	Less than 25% class attendance results in NG grade.
Laboratory	-	
Midterm Exam	30%	Written Exam
Quiz	20%	Written Exam
Final Exam	40%	Written Exam
Total	100%	

ECTS Allocated Based on the Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class (including the Exam week)	15	3	45
Labs and Tutorials	-	-	-
Assignments	-	-	-
Project/Presentation/Report Writing	1	25	25
E-learning Activities	-	-	-
Quizzes	1	15	15
Midterm Examination	1	15	15
Final Examination	1	15	15
Self Study	15	4	60
Total Workload	175		
Total Workload/30 (h)	5.83		
ECTS Credit of the Course	6		