GAU, Faculty of Engineering

Course Unit Title	Computer Architecture
Course Unit Code	CEN450
Type of Course Unit	Technical Elective, Computer Engineering Students
Level of Course Unit	4 th Year BSc
National Credits	3
Number of ECTS Credits Allocated	6 ECTS
Theoretical (hour/week)	3
Practice (hour/week)	-
Laboratory (hour/week)	-
Year of Study	4
Semester when the course unit is delivered	7/8
Course Coordinator	
Name of Lecturer (s)	
Name of Assistant (s)	-
Mode of Delivery	Face to Face
Language of Instruction	English
Prerequisities and co-requisities	CEN301 – Microprocessors
Recommended Optional Programme Components	Basic bacground Digital Design and Microprocessors

Objectives of the Course:

- > Familiarize students with the internal structure of computer systems.
- Highlighting important issues specifically computer architecture, organization, its performance, design and relation to the system software.
- > Gain an insight into nature of design process and the associated trade-offs.
- > Show how to design a computer or understand how a system works and why it performs as it does.
- Providing students with the necessary knowledge and skills required to understand the interaction between H/W and S/W at a lower level that offers a framework for understanding the fundamentals of computing.

Learning Outcomes				
When this course has been completed the student should be able to			sesment.	
1	Explain the internal structure of computer systems.			
2	2 Recognize different types of architectures and the difference between computer architecture and organization.			
3 Apply the various performance measures to compare between different computer systems.			1	
4	4 Recognize different techniques used in the design of computer system components.			
5	5 Know how to design a computer system.			
6	6 Show how a computer system works and why it performs as it does.			
7	7 Explain the interaction between H/W and S/W at a variety of levels that offers a framework for understanding the fundamentals of computing.			
8	Tie ideas from the course more closely to real world outside the computing industry.		1	
	Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4. Presentation, 5 La	b. Wo	ork	
Course's Contribution to Program				
			CL	
1 Ability to understand and apply knowledge of mathematics, science, and engineering			4	
2 Ability to design and conduct experiments as well as to analyze and interpret data			1	
3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct			1	
4 Ability to apply systems thinking in problem solving and system design			3	
5 Knowledge of contemporary issues while continuing to engage in lifelong learning			2	
6 Ability to use the techniques, skills and modern eng. tools necessary for engineering practice			1	
7	7 Ability to express their ideas and findings, in written and oral form		1	
8	8 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints			
9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner			3	
10	To apply fundamental concepts of software design, database design, data processing and artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions.		1	
11	Ability to analyse and design hardware systems by applying the principles of embedded systems, microprocessors, computer networks, distributed systems and data communication.		4	
	CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5: Very High)			

Course Contents					
Week			Exams		
1	Chapter 1	Introduction to computer architecture. Concept of performance.			
2		Instruction Set Architecture (ISA)			
3		Arithmetic operations			
4	Chapter 2	Floating point operations			
5		Datapath design			
6		Datapath design			
7			Midterm		
8	Chapter 3	Microprogramming and exceptions			
9		Pipelining			
10		Handling Branch Instructions			
11		Handling Branch Instructions			
12	Chapter 4	Memory and Cache	Quiz		
13		Virtual Memory			
14		A Common Framework for Memory Hierarchy			
15			Final		

Recommended Sources

Textbook:

D. A. Patterson, J. L. Hennessy, "Computer Organization & Design: The Hardware / Software Interface", Morgan Kaufmann, 4th Edition, 2011

Supplementary Material (s):

Hennessy J.L., Patterson D.A., "Computer Architecture: A Quantitative Approach", Morgan Kaufmann, 4th Edition, 2006

Assessment					
Attendance	10%	Less than 25% class attendance results in NG grade.			
Laboratory	-				
Midterm Exam	30%	Written Exam			
Quiz	20%	Written Exam			
Final Exam	40%	Written Exam			
Total	100%				

ECTS Allocated Based on the Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class (including the Exam week)	15	3	45
Labs and Tutorials	-	-	-
Assignments	-	-	-
Project/Presentation/Report Writing	1	25	25
E-learning Activities	-	-	-
Quizzes	1	15	15
Midterm Examination	1	15	15
Final Examination	1	15	15
Self Study	15	4	60
Total Workload	175		
Total Workload/30 (h)	5.83		
ECTS Credit of the Course	6		