GAU, Faculty of Engineering

Course Unit CEN446 Type of Course Unit 4th year National Credits 3 Number of ECTS Credits Allocated 6 ECTS Theoretical (hour/week) 3 Practice: (hour/week) 4 Semester when the course unit is delivered 7.8 Course Coordinator Assist. Prof. Dr. Kamil Dimililer Name of Lecturers Assist. Prof. Dr. Kamil Dimililer Name of Assistant - Percequisities and co-regulsities - Precequisities - Recommended Optional Programme Components Mathematics Objectives of the Course: - > Teaching padvanced techniques such as clustering and classification Discussing problems and future of IR. - Veach of Studies - 2 Teaching advanced techniques such as clustering and classification Discussing problems and future of IR. - 2 Evaluate the performance of a given IR system 1 1 Solve basic problems by applying Vector Space Method 1 2 Evaluate the ereformance of a given IR system <th>Cour</th> <th>rse Unit Title</th> <th colspan="3">Introduction to Information Retrieval</th>	Cour	rse Unit Title	Introduction to Information Retrieval				
Type of Course Unit Technical Elective for Computer Engineering National Credits 3 National Credits 3 Namber of ECIS Credits Allocated 6 Forertical (hour/week) 3 Practice (hour/week) - Laboratory (hour/week) - Semester when the course unit is delivered 7.8 Course Coordinator Assist. Prof. Dr. Kamil Dimililer Name of Lecturers Assist. Prof. Dr. Kamil Dimililer Name of Assistant - Recommended Optional Programme Components Mathematics Objectives of the Course: - Teaching fundamentals methods of Information Retrieval - Teaching performance Cristeria of IR systems - Teaching advanced techniques such as clustering and classification > Discussing problems and future of IR. - Learring Outcomes 1 When this course has been completed the student should be able to Assessment. 1 Solve basic problems by applying Vector Space Method 1 2 Evaluate the performance of a given IR system 1	Course Unit Code		CEN446				
Level of Course Unit 4th year Number of ECTS Credits Allocated 6 ECTS Theoretical (hour/week) 3 Practice (hour/week) - Laboratory (hour/week) - Semester when the course unit is delivered 7.8 Course Coordinator Assist. Prof. Dr. Kamil Dimililer Name of Assistant - Prercequisities and co-regulsities - Recommended Optional Programme Components Mathematics Objectives of the Course: - > Teaching Indoamentals methods of Information Retrieval 2 Teaching Indoamentals methods of Information Retrieval 2 Teaching advanced techniques such as clustering and classification 2 Evaluate the performance origonesecond as eventil the student should be able to </th <th colspan="2">Type of Course Unit</th> <th colspan="3">Technical Elective for Computer Engineering</th>	Type of Course Unit		Technical Elective for Computer Engineering				
National Credits 3 Number of ECIS Credits Allocated 6 ECTS Theoretical (hour/week) 3 Practice (hour/week) - Laboratory (hour/week) - Semester when the course unit is delivered 7-8 Course Coordinator Assist. Prof. Dr. Kamil Dimililer Name of Assistant - Mane of Lecturers Assist. Prof. Dr. Kamil Dimililer Name of Assistant - Mode of Delivery Face to Face, Language of Instruction English Precequisities and en-requisities - Recommended Optional Programme Components Mathematics Objectives of the Course: - > Teaching fundamentals methods of Information Retrieval - Teaching performance criteria of IR systems - Teaching nudamentals methods of Information Retrieval - > Learning Outcomes -<	Leve	l of Course Unit	4th year				
Number of ECTS Credits Allocated 6 ECTS Theoretical (hour/week) 3 Practice (hour/week) - Laboratory (hour/week) - Semester when the course unit is delivered 7-8 Course Coordinator Assist. Prof. Dr. Kamil Dimililer Name of Assistant - Assist. Prof. Dr. Kamil Dimililer - Name of Assistant - Prerequisities - Recommended Optional Programme Components Mathematics Objectives of the Course: - * Teaching performance criteria of IR systems * Teaching problems and future of IR. Learning Outcomes I Solve basic problems by applying Vector Space Method 1 2 Evaluate the performance of a given IR systems 1 3 Apply indexing methods for IR systems 1 2 Evaluate the performance of a given IR systems 1 3 Apply indexing methods for R systems 1 4 Apply indexing methods for R systems 1 5 Recal and explain an new articl	Natio	onal Credits	3				
Theoretical (hour/week) 3 Practice (hour/week) - Laboratory (hour/week) 4 Semester when the course unit is delivered 7.8 Course Coordinator Assist. Prof. Dr. Kamil Dimililer Name of Lecturers Assist. Prof. Dr. Kamil Dimililer Name of Assistant - Assist. Prof. Dr. Kamil Dimililer Image of Instruction Requisities and co-requisities - Recommended Optional Programme Components Mathematics Objectives of the Course: - > Teaching nodamentals methods of Information Retrieval - > Teaching performance criteria of R systems - > Teaching performance or fartie of R systems - > Discussing problems and future of IR. Learning Outcomes When this course has been completed the student should be able to Assessment. 1 Solve basic problems and puplying Vector Space Method 1 2 Evaluate the performance of a given R system 1 3 Apply clustering techniques in R systems 1 4 Apply clustering techniques in R systems 1	Num	ber of ECTS Credits Allocated	6 ECTS				
Practice (hour/week) - Laboratory (hour/week) - Year of Study 4 Semester when the course unit is delivered 7.8 Course Coordinator Assist. Prof. Dr. Kamil Dimililer Name of Assistant - Assist. Prof. Dr. Kamil Dimililer - Name of Assistant - Prerequisities and co-requisities - Recommended Optional Programme Components Mathematics Objectives of the Course: - > Teaching fundamentals methods of Information Retrieval > Teaching advanced techniques such as clustering and classification > Discussing problema and future of IR. Learning Outcomes I When this course has been completed the student should be able to Assesment. 1 Solve basic problems by applying Vector Space Method 1 2 Evaluate the performance of a given IR system 1 3 Apply indexing methods for IR systems 1 4 Apply clustering techniques in IR systems 1 5 Read and explain an new article in this field 3.4 Assesment Methods: 1. Written Exam, 2. Ass	Theo	oretical (hour/week)	3				
Laboratory (hour/week) - Year of Study 4 Semester when the course unit is delivered 7.8 Course Coordinator Assist. Prof. Dr. Kamil Dimililer Name of Lecturers Assist. Prof. Dr. Kamil Dimililer Name of Assistant - Recommended Optional Programme Components Mathematics Objectives of the Course: - > Teaching performance criteria of IR systems - Preaching advanced techniques such as clustering and classification > > Teaching performance of a given IR systems - Vera this course has been completed the student should be able to Assesment. 1 Solve basic problems and future of IR. Laborating thordamentals methods for IR systems 1 1 Solve basic problems by applying Vector Space Method 1 2 Evaluate the performance of a given IR systems 1 3 Apply indexing methods for IR systems 1 4 Apply clustering techniques in R systems 1 5 Read and explain an new article in this field 3.4 4 Apply clustering techniques in R systems 1 4 Ability	Prac	tice (hour/week)	-				
Year of Study 4 Semester when the course unit is delivered 7-8 Course Coordinator Assist. Prof. Dr. Kamil Dimililer Name of Lecturers Assist. Prof. Dr. Kamil Dimililer Mode of Delivery Face to Face, Language of Instruction English Prerequisities and co-requisities - Prerequisities and co-requisities - Preaching fundamentals methods of Information Retrieval - Teaching performance criteria of IR systems - Teaching performance criteria of IR systems - Teaching performance criteria of IR system 1 Discussing problems and future of IR. - Learning Outcomes - When this course has been completed the student should be able to Assesment. 1 Solve basic problems by applying Vector Space Method 1 2 Evaluate the performance of a given IR system 1 3 Apply indexing methods for IR systems 1 4 Apply clustering techniques in IR systems 1 5 Read and explain an new article in this field 3.4 Assister moththeois: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Pres	Labo	oratory (hour/week)	-				
Semester when the course unit is delivered 7-8 Course Coordinator Assist. Prof. Dr. Kamil Dimililer Name of Lecturers Assist. Prof. Dr. Kamil Dimililer Name of Assistant - Particle Face to Face, Language of Instruction English Prerequisities and co-requisities - Recommended Optional Programme Components Mathematics Objectives of the Course: - > Teaching performance criteria of IR systems - > Teaching portormance criteria of IR systems - > Teaching performance criteria of IR system - > Discussing problems and future of IR. - Learning Outcomes When this course has been completed the student should be able to Assesment. 1 Solve basic problems by applying Vector Space Method 1 2 Evaluate the performance of a given IR system 1 3 Apply indexing methods for IR systems 1 4 Apply clustering techniques in IR systems 1 5 Read and explain an new article in this field 3,4 Assesment Methods: 1. Written Exam, 2. Ass	Year	of Study	4				
Course Coordinator Assist. Prof. Dr. Kamil Dimilier Name of Lecturers Assist. Prof. Dr. Kamil Dimililer Name of Assistant - Mode of Delivery Face to Face, Language of Instruction English Prerequisities and co-requisities - Recommended Optional Programme Components Mathematics Objectives of the Course: - * Teaching fundamentals methods of Information Retrieval * Teaching fundamentals methods of Information Retrieval * Teaching genformance criteria of IR systems * Teaching fundamentals methods of Information Retrieval * Teaching advanced techniques such as clustering and classification > Discussing problems and future of IR. Learning Outcomes I When this course has been completed the student should be able to Assesment. 3 Apply indexing methods for IR systems 1 4 Apply clustering techniques in IR systems 1 5 Read and explain an new article in this field 3.4 Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work	Seme	ester when the course unit is delivered	7-8				
Name of Lecturers Assist. Prof. Dr. Kamil Dimiliter Mode of Delivery Face to Face, Language of Instruction English Prerequisities and co-requisities - Recommended Optional Programme Components Mathematics Objectives of the Course: - > Teaching performance criteria of IR systems - Teaching performance criteria of IR systems - > Teaching advanced techniques such as clustering and classification - > Discussing problems and future of IR. - Learning Outcomes - When this course has been completed the student should be able to Assessment. 1 Solve basic problems by applying Vector Space Method 1 2 Evaluate the performance of a given IR systems 1 3 Apply indexing methods for IR systems 1 5 Read and explain an new article in this field 3.4 Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work CL 1 Ability to understand and apply knowledge of mathematics, science, and engineering 3 3 Apply inducting performance of contemporary issues while exhibiting professional responsibility and ethical cond	Cour	se Coordinator	Assist. Prof. Dr. Kamil Dimililer				
Name of Assistant	Nam	e of Lecturers	Assist. Prof. Dr. Kamil Dimililer				
Mode of Delivery Prace to Face, English Ianguage of Instruction English Prerequisities and co-requisities - Recommended Optional Programme Components Mathematics Objectives of the Course: - Teaching performance criteria of IR systems - Teaching performance criteria of IR systems - Discussing problems and future of IR. - Learning Outcomes - When this course has been completed the student should be able to Assesment. 1 Solve basic problems by applying Vector Space Method 1 2 Evaluate the performance of a given IR system 1 3 Apply indexing methods for IR systems 1 4 Apply clustering techniques in IR systems 1 5 Read and explain an new article in this field 3.4 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to understand and apply knowledge of mathematics, science, and engineering 3 3 Ability to understand and apply knowledge of mathematics, science, and engineering 3 4 Abilit	Nam	e of Assistant	-				
Language of instruction Enginsh Prerequisities and co-requisities - Recommended Optional Programme Components Mathematics Objectives of the Course: - > Teaching performance criteria of IR systems - Learning Outcomes - When this course has been completed the student should be able to Assesment. 1 Solve basic problems by applying Vector Space Method 1 2 Evaluate the performance of a given IR systems 1 3 Apply indexing methods for IR systems 1 4 Apply clustering techniques in IR systems 1 5 Read and explain an new article in this field 3.4 Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work CLL 1 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethiccal	MOD	e of Denvery	Face to Face,				
Prorequisities and co-requisities	Lang	guage of Instruction	English				
Recommended Optionial Programme Components Mathematics Objectives of the Course: > Teaching fundamentals methods of Information Retrieval > > Teaching performance criteria of IR systems > > Teaching dynamed techniques such as clustering and classification > >> Discussing problems and future of IR. Learning Outcomes When this course has been completed the student should be able to Assessment, 1 Solve basic problems by applying Vector Space Method 1 2 Evaluate the performance of a given IR system 1 3 Apply indexing methods for IR systems 1 4 Apply clustering techniques in IR systems 1 5 Read and explain an new article in this field 3,4 Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work Course's Contribution to Program CL 1 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to own in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 5 5	Prer	equisities and co-requisities	- Mathamatics				
Objectives of the Course: > Teaching fundamentals methods of Information Retrieval > Teaching performance criteria of IR systems > Teaching advanced techniques such as clustering and classification > Discussing problems and future of IR. Learning Outcomes View this course has been completed the student should be able to Assesment. 1 Solve basic problems by applying Vector Space Method 1 2 Evaluate the performance of a given IR system 1 3 Apply indexing methods for IR systems 1 4 Apply clustering techniques in IR systems 1 5 Read and explain an new article in this field 3,4 Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work CLL 1 Ability to understand and apply knowledge of mathematics, science, and engineering 3 3 Ability to understand and apply knowledge of mathematics, science, and engineering 1 4 Ability to odesign and conduct experiments as well as to analyze and interpret data 1 3 Ability to apply systems thinking in problem solving and system design 5 4 Ability to apply systems thinking in problem solving and system design 5 <th>Reco</th> <th>mmended Optional Programme Components</th> <th>Mathematics</th> <th></th> <th></th>	Reco	mmended Optional Programme Components	Mathematics				
Learning Outcomes When this course has been completed the student should be able to Assessment. 1 Solve basic problems by applying Vector Space Method 1 2 Evaluate the performance of a given IR system 1 3 Apply indexing methods for IR systems 1 4 Apply clustering techniques in IR systems 1 5 Read and explain an new article in this field 3,4 Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work CL 1 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to understand and apply knowledge of mathematics, science, and engineering 3 3 Ability to understand and apply knowledge of mathematics, science, and engineering 1 4 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to understand and apply knowledge of mathematics, science, and engineering 1 3 Ability to understand and apply knowledge of mathematics, science, and engineering 3 4 Ability to understand and apply knowledge of mathematics, science, and engineering 1 <th></th> <th colspan="6"> Teaching fundamentals methods of Information Retrieval Teaching performance criteria of IR systems Teaching advanced techniques such as clustering and classification Discussing problems and future of IR. </th>		 Teaching fundamentals methods of Information Retrieval Teaching performance criteria of IR systems Teaching advanced techniques such as clustering and classification Discussing problems and future of IR. 					
When this course has been completed the student should be able to Assessment. 1 Solve basic problems by applying Vector Space Method 1 2 Evaluate the performance of a given IR system 1 3 Apply indexing methods for IR systems 1 4 Apply clustering techniques in IR systems 1 5 Read and explain an new article in this field 3.4 Vortice Source's Contribution to Program CL Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to work in multidisciplinary teams while continuing to engage in lifelong learning 5 5 Knowledge of contemporary issues while continuing to engage in lifelong learning 5 5 6 Ability to express their ideas and findings, in written and oral form 5 5 8 Ability to express their ideas and findings, in written and oral form 3 3 </th <th colspan="7">Learning Outcomes</th>	Learning Outcomes						
1 Solve basic problems by applying Vector Space Method 1 2 Evaluate the performance of a given IR system 1 3 Apply indexing methods for IR systems 1 4 Apply clustering techniques in IR systems 1 5 Read and explain an new article in this field 3,4 Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work Curse's Contribution to Program Course's Contribution to Program CL 1 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 ethical conduct 1 1 4 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 5 5 Knowledge of contemporary issues while continuing to engage in lifelong learning practice 5 6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice 5 8 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethicall presp	When	hen this course has been completed the student should be able to Asse			sesment.		
2 Evaluate the performance of a given IR system 1 3 Apply indexing methods for IR systems 1 4 Apply clustering techniques in IR systems 1 5 Read and explain an new article in this field 3,4 Assesment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work Vortexe's Contribution to Program CL Output: 4 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 5 5 Knowledge of contemporary issues while continuing to engage in lifelong learning practice 5 6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice 3 7 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 <td>1</td> <td colspan="4">1 Solve basic problems by applying Vector Space Method 1</td>	1	1 Solve basic problems by applying Vector Space Method 1					
3 Apply indexing methods for IR systems 1 4 Apply clustering techniques in IR systems 1 5 Read and explain an new article in this field 3,4 5 Read and explain an new article in this field 3,4 Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work Course's Contribution to Program CL 1 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 5 5 Knowledge of contemporary issues while continuing to engage in lifelong learning practice 4 7 Ability to express their ideas and findings, in written and oral form realistic constraints 3 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 10 artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions. <t< th=""><td>2</td><td colspan="3">Evaluate the performance of a given IR system</td><td>1</td></t<>	2	Evaluate the performance of a given IR system			1		
4 Apply clustering techniques in IR systems 1 5 Read and explain an new article in this field 3,4 Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work Course's Contribution to Program CL 1 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 Ability to design and conduct experiments as well as to analyze and interpret data 1 4 Ability to owrk in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 5 5 Knowledge of contemporary issues while continuing to engage in lifelong learning practice 5 6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice 4 7 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 3 9 Ability to approach engineering problems and effects of their possible solutions within a well stiltical intelligence in the modeling, designing, implementing, testing and deploying software solutions. 5 10	3	Apply indexing methods for IR systems			1		
5 Read and explain an new article in this field 3,4 Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work Course's Contribution to Program Cl Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 5 5 Knowledge of contemporary issues while continuing to engage in lifelong learning practice 4 7 Ability to express their ideas and findings, in written and oral form 5 8 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 3 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 10 To apply fundamental concepts of software design, database design, data processing and artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions.	4	Apply clustering techniques in IR systems			1		
Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4.Presentation, 5 Lab. Work Course's Contribution to Program 1 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 5 5 Knowledge of contemporary issues while continuing to engage in lifelong learning practice 4 7 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice 5 8 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 3 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 10 To apply fundamental concepts of software design, database design, data processing and artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions. 5 11 Ability to analyse and design har	5	Read and explain an new article in this field			3,4		
Course's Contribution to Program CL CL 1 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 5 5 Knowledge of contemporary issues while continuing to engage in lifelong learning practice 5 6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice 4 7 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 3 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 10 To apply fundamental concepts of software design, database design, data processing and artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions. 5 11 Ability to analyse and design hardware systems by applying the principles of embedded systems, microprocessors, computer networks, distributed systems and data communication. 1 12 C.E.		Assesment Methods: 1. Written Exam, 2. Assign	nment 3. Project/Report, 4.Presentation, 5 La	b. Wo	ork		
CLCL1Ability to understand and apply knowledge of mathematics, science, and engineering32Ability to design and conduct experiments as well as to analyze and interpret data13Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct14Ability to apply systems thinking in problem solving and system design55Knowledge of contemporary issues while continuing to engage in lifelong learning56Ability to use the techniques, skills and modern engineering tools necessary for engineering practice47Ability to express their ideas and findings, in written and oral form58Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints39Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner310To apply fundamental concepts of software design, database design, data processing and artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions.511Ability to analyse and design hardware systems by applying the principles of embedded 	Cour	se's Contribution to Program					
1 Ability to understand and apply knowledge of mathematics, science, and engineering 3 2 Ability to design and conduct experiments as well as to analyze and interpret data 1 3 Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct 1 4 Ability to apply systems thinking in problem solving and system design 5 5 Knowledge of contemporary issues while continuing to engage in lifelong learning 5 6 Ability to express their ideas and findings, in written and oral form 5 7 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 3 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 10 artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions. 5 11 Ability to analyse and design hardware systems by applying the principles of embedded systems, microprocessors, computer networks, distributed systems and data communication. 1 10 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5:Very High) 1					CL		
2Ability to design and conduct experiments as well as to analyze and interpret data13Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct14Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct14Ability to apply systems thinking in problem solving and system design55Knowledge of contemporary issues while continuing to engage in lifelong learning practice56Ability to use the techniques, skills and modern engineering tools necessary for engineering practice47Ability to express their ideas and findings, in written and oral form58Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints39Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner310To apply fundamental concepts of software design, database design, data processing and artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions.511Ability to analyse and design hardware systems by applying the principles of embedded systems, microprocessors, computer networks, distributed systems and data communication.1CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5:Very High)1	1	Ability to understand and apply knowledge of m	hathematics, science, and engineering		3		
2 Fibrity to oright the oblight the oblight the oblight the oblight the term is to the problem to the problem of the problem	2	Ability to design and conduct experiments as we	ell as to analyze and interpret data		1		
4Ability to apply systems thinking in problem solving and system design55Knowledge of contemporary issues while continuing to engage in lifelong learning56Ability to use the techniques, skills and modern engineering tools necessary for engineering practice47Ability to express their ideas and findings, in written and oral form58Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints39Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner310To apply fundamental concepts of software design, database design, data processing and artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions.511Ability to analyse and design hardware systems by applying the principles of embedded systems, microprocessors, computer networks, distributed systems and data communication.1CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5:Very High)1	3	Ability to design and conduct experiments as well as to analyze and interpret data Ability to work in multidisciplinary teams while exhibiting professional responsibility and athiead conduct			1		
5Knowledge of contemporary issues while continuing to engage in lifelong learning56Ability to use the techniques, skills and modern engineering tools necessary for engineering practice47Ability to express their ideas and findings, in written and oral form58Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints39Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner310artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions.511Ability to analyse and design hardware systems by applying the principles of embedded systems, microprocessors, computer networks, distributed systems and data communication.1CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5:Very High)1	4	Ability to apply systems thinking in problem so	lving and system design		5		
6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice 4 7 Ability to express their ideas and findings, in written and oral form 5 8 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 3 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 10 artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions. 5 11 Ability to analyse and design hardware systems by applying the principles of embedded systems and data communication. 1 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5:Very High) 1	5	Knowledge of contemporary issues while continuing to engage in lifelong learning		5			
7 Ability to express their ideas and findings, in written and oral form 5 8 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 3 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 10 To apply fundamental concepts of software design, database design, data processing and artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions. 5 11 Ability to analyse and design hardware systems by applying the principles of embedded systems, microprocessors, computer networks, distributed systems and data communication. 1 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5:Very High) 1	6	Ability to use the techniques, skills and modern engineering tools necessary for engineering practice			4		
8 Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints 3 9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 10 To apply fundamental concepts of software design, database design, data processing and artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions. 5 11 Ability to analyse and design hardware systems by applying the principles of embedded systems, microprocessors, computer networks, distributed systems and data communication. 1 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5:Very High) 1	7	Ability to express their ideas and findings, in written and oral form			5		
9 Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner 3 10 To apply fundamental concepts of software design, database design, data processing and artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions. 5 11 Ability to analyse and design hardware systems by applying the principles of embedded systems, microprocessors, computer networks, distributed systems and data communication. 1 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5:Very High) 1	8	Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints			3		
To apply fundamental concepts of software design, database design, data processing and 10 artificial intelligence in the modeling, designing, implementing, testing and deploying software 11 Ability to analyse and design hardware systems by applying the principles of embedded 11 Systems, microprocessors, computer networks, distributed systems and data communication. 11 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5:Very High)	9	Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner			3		
11 Ability to analyse and design hardware systems by applying the principles of embedded systems, microprocessors, computer networks, distributed systems and data communication. 1 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5:Very High) 1	10	To apply fundamental concepts of software design, database design, data processing and artificial intelligence in the modeling, designing, implementing, testing and deploying software solutions.			5		
CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5: Very High)	11	Ability to analyse and design hardware systems systems, microprocessors, computer networks, c	by applying the principles of embedded listributed systems and data communication.		1		

Course Contents						
Week		Exams				
1	Introduction					
2	Overview of IR systems					
3	Boolean Method					
4	Vector Space Method					
5	Precision and Recall					
6	Precision-Iecall Curves					
7	Index Files					
8		Midterm				
9	Indexing					
10	Classification and Clustering					
11						
12	Dimension Reduction	Quiz				
13	Web Retrieval					
14						
15		Final				

Recommended Sources

Textbook: Ricardo Baeza-Yates and Berthier Ribeiro-Neto, Modern Information Retrieval, Addison Wesley, 1999.

Supplementary Material (s): 1. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. 2009.

(http://www-csli.stanford.edu/~schuetze/information-retrieval-book.html)

2. C. J. van Rijsbergen, Information Retrieval.. Butterworths, 1979.

(http://www.dcs.gla.ac.uk/Keith/Preface.html)

Assessment

Attendance	5%	
Midterm Exam	25%	Written Exam
Quiz	20%	Written Exam
Presentation	10%	
Final Exam	40%	Written Exam
Total	100%	

ECTS Allocated Based on the Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class (including the Exam week)	15	3	45
Labs and Tutorials	-	-	-
Assignments	-	-	-
Project/Presentation/Report Writing	1	30	30
E-learning Activities	4	2	8
Quizzes	1	12	12
Midterm Examination	1	12	12
Final Examination	1	15	15
Self Study	14	3	42
Total Workload	164		
Total Workload/30 (h)	5.47		
ECTS Credit of the Course	6		