GAU, Faculty of Engineering

Course Unit Title	Structured Programming Languages		
Course Unit Code	CEN302		
Type of Course Unit	Compulsory, Computer Engineering Students		
Level of Course Unit	3 rd Year BSc		
National Credits	4		
Number of ECTS Credits Allocated	6 ECTS		
Theoretical (hour/week)	3		
Practice (hour/week)	-		
Laboratory (hour/week)	2		
Year of Study	3		
Semester when the course unit is delivered	6		
Mode of Delivery	Face to Face, Laboratory Experiments		
Language of Instruction	English		
Prerequisities and co-requisities	ENG102 - Computer Programming I		
Recommended Optional Programme Components	Basic bacground computer programming		

Objectives of the Course:

- > To improve the understanding of the principles of the programming languages.
- > To overview different programming paradigms like Logic, Functional and Object Oriented languages.
- > To teach the differences and similarities between different types of languages
- To teach the concepts and principles of different type of programming languages. Topics include syntax, semantics, names, types, memory management
- > To teach basics of JAVA language during laboratory sessions as a platform of teaching students how to learn a new language and put it to practice

Learning Outcomes

When	n this course has been completed the student should be able to	Asse	sment.	
1	List the key features of major programming language paradigms			
2	Specify the syntax of programming languages using context free grammars		1	
3	Draw a parse tree and/or list productions for a sentence in a language, given its grammar			
4	Demonstrate that a specific grammar is ambiguous		1	
5	Differentiate between static and dynamic scope and ability to analyze variables' scope(s)	1		
6	Ability to learn a new programming language by investigating that language's syntax, semantics and type system.			
	Assessment Methods: 1. Written Exam, 2. Assignment 3. Project/Report, 4. Presentation, 5 Lab.	. Wor	k	
Cour	rse's Contribution to Program			
			CL	
1	Ability to understand and apply knowledge of mathematics, science, and engineering			
2	Ability to design and conduct experiments as well as to analyze and interpret data		1	
3	Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct			
4	Ability to apply systems thinking in problem solving and system design			
5			5	
6	6 Ability to use the techniques, skills and modern engineering tools necessary for engineering practice		5	
7	Ability to express their ideas and findings, in written and oral form		1	
8	Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints			
9	Ability to approach engineering problems and effects of their possible solutions within a well			
10	To apply fundamental concepts of software design, database design, data processing and artificial		3	
11	Ability to analyse and design hardware systems by applying the principles of embedded systems, microprocessors, computer networks, distributed systems and data communication.			
	CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5:Very High)			

Course Contents				
Week			Exams	
1	Chapter 1	Introduction		
2		Basics of Structured. Prog. Lang.		
3		Basics of Structured. Prog. Lang.		
4	Chapter 2	Syntax in Programming Languages		
5		Parsing		
6		Ambiguity		
7			Midterm	
8	Chapter 3	Names and Type System		
9		Names and Scope		
10		Data Types		
11	Chapter 4	Semantic in Programming Languages		
12		Evaluation Trees	2 nd Midterm Exam	
13		Evaluation Trees		
14	Chapter 5	Functions and Memory Space		
15			Final	

Recommended Sources

Textbook:

A.B.Tucker, R.E.Noonan, "Programming Languages: Principles and Paradigms", McGraw Hill, 2nd Edition, 2007.

Supplementary Material (s): R.W.Sebesta, "Concepts of Programming Languages", Addison Wesley, 8th Edition, 2008.

Assessment

Attendance	10%	Less than 25% class attendance results in NG grade.
Laboratory	10%	Less than 25% laboratory attendance results in NG grade.
Midterm Exam	20%	Written Exam
2 nd Midterm Exam	20%	Written Exam
Final Exam	40%	Written Exam
Total	100%	

ECTS Allocated Based on the Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class (including the Exam week)	15	3	45
Labs and Tutorials	10	2	20
Assignments	-	-	-
Project/Presentation/Report Writing	5	4	20
E-learning Activities	-	-	-
Quizzes	-	-	-
Midterm Examination	2	15	30
Final Examination	1	15	15
Self Study	14	3	42
Total Workload	172		
Total Workload/30 (h)	5.66		
ECTS Credit of the Course	6		